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Heat transfer in Fitzhugh-Nagumo models
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An extended FitzHugh-Nagumo model coupled with dynamical heat transfer in tissue, as described by a
bioheat equation, is derived and confronted with experiments. The main outcome of this analysis is that
traveling pulses and spiral waves of electric activity produce temperature variations on the order of tens of
u°C. In particular, the model predicts that a spiral wave’s tip, heating the surrounding medium as a conse-
quence of the Joule effect, leads to characteristic hot spots. This process could possibly be used to have a direct
visualization of the tip’s position by using thermal detectors.
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I. INTRODUCTION

The quantitative study of electrically active cells starts
from the remarkable work of Hodgkin and Huxley (HH) in
1952 on nerve conduction in the squid giant axon [1-4].
These authors used extensive experimental results to derive
the so-called HH model, i.e., a system of nonlinear differen-
tial equations describing the variations of membrane poten-
tial and ion conductances at a fixed point in the axon. More-
over, introducing a diffusion term, they were able to model
the propagation of an action potential along the fiber and also
compare it with experimental data.

The effects of temperature on the electrical activity of a
nerve were first studied in 1902 [5]. It is worth mentioning
the experimental work of Hodgkin and Katz [6] in 1949 on
the global effects of temperature on the electrical activity of
the giant axon of the squid.

The earliest clear evidence that the passage of a single
nerve impulse is closely associated with membranal tempera-
ture changes was the finding of Abbott, Hill, and Hovarth [7]
in 1958. Using a thermopile in conjunction with a galvanom-
eter they performed a careful study of the time-dependent
changes of temperature associated with a nerve impulse and
discovered that the production of heat is followed by its re-
absorption by the biological system.

Other experimental studies on the squid giant axon were
performed to explore the effects of temperature on the
threshold stimulating current and on the conduction velocity
of the action potential [8-~10], which is theoretically pre-
dicted using the HH model (see [11] and references therein).
Many studies concerning mechanical and thermal changes
associated with the excitation process in nerve fibers have
been conducted [7,12,13]. In particular the works of Tasaki
and co-workers [14,15] have shown that the thermal re-
sponse starts and reaches a peak on the order of some u°C
nearly simultaneously with the electric response. As ex-
pected, the phase of heat production is followed immediately
by the phase of heat absorption and no net heat release after
passage of the action potential. Global temperature effects
have been studied in squid of the genus Loligo and in other
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genera that contain giant axons, all animals that inhabit a
wide variety of thermal environments. By examining the ax-
ons, Rosenthal ef al. [18,19] have determined that their elec-
trical properties are seasonally acclimated. Action potentials
have been recorded at different temperatures and compared
among giant axons isolated from squids caught in May, in
relatively cold waters and in August, in relatively warm wa-
ters. In a different biological context, other studies have ad-
dressed the effects of heating on conductive properties in
myocardium [20]. The response of myocardial impulse
propagation to hyperthermia has been quantified and the
temperatures required for transient and permanent block in
conduction identified [21]. In order to explain the experimen-
tal results obtained for nerves, several papers have proposed
a “condenser theory” which attributes the observed initial
heat not to any chemical event but rather to the free energy
released in the lipid dielectric upon discharge of the mem-
brane capacity. This energy would all be released as Joule
heating of the medium upon complete discharge of the mem-
brane capacity. During repolarization, the free energy is
again stored in the membrane capacity. If the source of this
energy were the thermal energy of the ions in solution there
would be a corresponding cooling of the medium
[7,13,16,17]. To summarize, although experimental data exist
for local effects associated with heat transfer in nerves, a
theoretical model coupling action potential physics with tem-
perature variations is not addressed in the literature. Thus we
have found it natural to explore modifications induced by
time-varying temperature gradients, i.e., both global and lo-
cal heat transfer effects in excitable tissues. Although the
quantitative physiological models can differ significantly in
the number and complexity of equations, it is well known
that the (temperature-independent) standard FitzHugh-
Nagumo (FHN) model is a good first approximation for all
of them [22,23]. Consequently, in order to build a simplified
model of heat transfer in excitable systems, we will take into
account the global thermal effects using the theoretically fit
discussed in classical HH experiments [1] in which the axon
was kept at constant temperature.

We have then translated these results into FHN theory and
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coupled them with a simplified version of Pennes’ bioheat
equation [24] by assuming time- and space-varying tempera-
tures, which represent local effects. In particular we have
been interested in obtaining two maps, one describing the
propagation of the action potential and a corresponding sec-
ond one showing the thermal behavior in time of the electri-
cally stimulated tissue.

The main results of our analysis are the observation in
simulations of the evolution in time of hotter spots on elon-
gated fibers as a consequence of the Joule effect during the
whole spread of an action potential pulse. Such results agree
with the most credible hypothesis on heat propagation in
nerve fibers, i.e., the above mentioned condenser theory. In
particular, on square domains containing electric spiral
waves, hotter patterns with temperature on the order of tens
of u°C appear close to the spiral’s tip.

The paper is organized as follows. In Sec. II we derive
generalized FHN equations including heat transfer coupling,
giving the details in Appendix A. In Sec. III we perform
some analytic estimates keeping the temperature constant. In
Sec. IV we then pass to a numerical integration of the gen-
eral equations in order to have a dynamical view of heat
transfer (a dimensionless variable analysis is given in Appen-
dix B). Finally, possible experimental implications of such a
phenomenon in biological context are discussed in Sec. V.

II. HEAT TRANSFER IN THE FITZHUGH-NAGUMO
MODEL

Models describing the propagation of electrical excitation
waves in heart or brain tissues generally consist of two parts:
a model of the cardiac or neural cell, and a model describing
cellular interconnections. In general, the excitation of a cell

VilkqViT) + wyep (T, = T) + 03 V,VV, V +q,, =
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is brought about by the change in potential across the cell
membrane, due to transmembrane fluxes of various charged
ions (Na*, K*, Ca,", CI", etc.) and a mathematical descrip-
tion of these processes is based on the following equation
[25]:

I=C v I 1
—~m d t + m» ( )
where I represents the total transmembrane current, C,, is the
membrane capacitance, V is the transmembrane potential,
and 7, is the ionic transmembrane current. The time depen-
dence of the excitation of a single cell in the absence of
external currents is modeled by Eq. (1) with 7=0. In order to
describe wave propagation in the tissue as a whole it is in-
stead necessary to specify the currents resulting from the
intercellular coupling (I); these currents in turn are usually
responsible for (spatial) variations of the transmembrane po-
tential V, and such a behavior is well approximated by a
cablelike equation. All the existing studies describing electric
propagation in the giant squid axon have been performed
keeping the whole axon at uniform and constant temperature
via an external heat reservoir [1]. However, the current flux
and subsequent voltage spread in the fiber, due to space
variations of V in time, should create a heat transfer leading
to a space and time dependence of 7. Consequently, T
=T(t,x) should be inserted into the HH model equations, and
these in turn should be coupled to a Fourier-type equation for
the dynamical temperature spread. To accomplish this we use
a modification of the well known Pennes’ bioheat equation
[24], originally introduced to account for possible metabo-
lism and blood flow in a biological tissue. Assuming an elec-
tric contribution (that is, an additional heat source), Pennes’
equation results in [26-28]

conduction perfusion

where IQEk,», is the thermal conductivity tensor of the tissue
and T is the temperature, while w, and ¢, are the blood
perfusion and heat capacity and 7, is the arterial temperature.
In Eq. (2) summation on repeated indices is assumed.

For the giant squid axon modeled by HH, the perfusion
term can be interpreted as the rate of heat transfer between a
seawater bath around the axon having temperature 7, and the
axon itself. The quantity ¢, is the metabolic heat term
(which accounts for production and reabsorption of heat due
to effects associated with the molecular structure of the cell),
p is the tissue density, c, is the heat capacity of the tissue,
and 6= gy is the electrical specific conductivity tensor (per
unit volume), measured in S/m. Thermal unit conventions
follow those of Ref. [26].

A biological medium is a conducting medium [29] in
which electric current diffuses, the current vector being

heat sources and sinks

pcpﬂtT . (2)

energy storage rate

Ji= o (&= Vi), 3)

where £=-V*V. This equation states that even in the ab-
sence of current flow, a gradient of temperature will generate
an electric field (thermoelectricity). For simplicity, in the fol-
lowing we will neglect thermoelectricity, i.e., we assume &
=0.

Under these assumptions, the power source in the heat
equation is fEE oy V;VV,V, ie., the well known Joule ef-
fect. Concerning the conductivity tensor, we point out that in
the existing literature, starting from the original HH papers
up to more accurate analyses of the wave propagation speed
[25,30,31], the conductivity is always considered tempera-
ture independent for temperature variations up to 25 °C,
since this assumption is in good agreement with experiments.
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However, as shown in a recent study of seasonal variations
(i.e., environmental temperature variations) of conduction
velocity in squid giant axons [18], resistive changes in the
axon are experimentally observed. The generalized
FitzHugh-Nagumo model including such heat transfer effects
is shown below, while the detailed steps of its derivation are
presented in Appendix A:

di V-Vy,—Ri

o ¢(T)( L ) @
v T

CmE—D0V2V=— (%)[F(V)H‘]—IO, (3)

koVT + ao(VV)? + caws(T: = T) = pc,d,T. (6)

In these equations the variable V is the action potential, i is a
gating variable, and 7 is the temperature. The remaining
quantities, discussed in Appendix A, belong to the circuit
equivalent representation of the FHN model and to the heat
equation properties in biological tissues. Following a stan-
dard procedure these equations can be made dimensionless.
The details are listed in Appendix B, while the final equa-
tions are

v 1
—=—{D,;Vu+ 1 +bO)Zv(l —v)v—a)—w]-w,
T x
ow 1
—==3%,(v-vy— W),
T x
00 1
; = ;[624V2® + 6250'1 V [V VU - 623(® - @*)] (7)

The quantities v and w are the dimensionless action potential
and gating variable, respectively, while O is related to the

dimensionless temperature and the variables 7 and X appear-
ing in the partial derivatives are dimensionless time and
space variables. Due to the various rescalings, new constants
(e.g., €y, etc.) are defined in Appendix B.

Limiting case of the temperature-independent FHN equations

By setting @=0.=0 (i.e., T=T+=6.3 °C) and o,=0, one
obtains the limiting case of the temperature-independent
FHN equations in standard form [32-35]. With this choice,
the first and the second equations of system (7) are the origi-
nal FHN equations. As shown in the following, the extended
FHN model describes phenomena producing temperature ex-
cursions on the order of tens of u °C, according to experi-
mental data. Due to this fact, the third equation of system
(7), taking into account variations of tens of u°C around the
bath temperature 7-=6.3 °C, practically does not affect the
electric dynamics of the model. In fact, such a small local
effect of temperature does not affect the action potential and
other electric properties of the medium, as discussed in detail
in Sec. IV. Consequently we can state that the case T=Tx
=6.3 °C in our generalized model corresponds in practice to
the temperature-independent FHN model. In the next sec-
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tions, we will discuss comparisons of the extended
temperature-dependent FHN with the original FHN model
[6=0:=0 (i.e., T=T-=6.3 °C)].

III. SEMIANALYTICAL RESULTS IN SIMPLE CASES

Equations (7) form a system of coupled nonlinear partial
differential equations, which can essentially be studied only
numerically due to its complicated form. Before doing so, we
first try to clarify the role played by temperature in the di-
mensionless dynamics by using semiquantitative analyses.
Hereafter we will assume y=1 without any loss of general-
1ty.

For simplicity, let us consider first the zero-dimensional
FHN equations, i.e., with no spatial dependence. The third
equation of (7) then implies

O =0(0)e B+ 0.(1 —e 27, (8)

which clearly shows that soon after 7~ €3, the temperature
approaches the limiting value: 0,=0., as expected. The re-
maining equations in this case are

2 {1+ OIS0l =)0 - @) = w] - e}

M _ 300

P €1V —vy—w). 9)
-

In the absence of current densities, there cannot be a Joule
effect so that the initial excess heat is reabsorbed by the
metabolic perfusion term. Eliminating this term, i.e., setting
€3=0, one gets a constant solution for the temperature
O(7)=0(0). We note that this case corresponds to a simpli-
fied (and rough) version of the HH experiments, i.e., an axon
threaded by a metallic conductor and kept at constant tem-
perature in a thermal bath. Defining the new time coordinate
w=[1+bO(0)]7 and the new parameter €=e,,[1+bO(0)]™!
and assuming wy=0 for simplicity, we reobtain the standard
FHN model

L S0l - o) - @) - wl,
I

;ﬂ=g(v—vo—7w), (10)
"

in which only the time scales and the excitability have been
modified; consequently the whole dynamics is simply res-
caled. In more detail, if ®(0)>0 one has more frequent ac-
tion potentials with sharpened oscillation-relaxation behav-
ior, while if ®(0)<<0 one obtains the opposite effect, i.e.,
longer periods with an elongated plateau.

We can now implement wave propagation in one dimen-
sion. We assume for simplicity that @(7)=0(0)= 0. is con-
stant in our equations. This case is related to the HH experi-
ments again in which the entire axon, unthreaded this time, is
externally kept at constant temperature. Imposing w=0 (i.e.,
the bistable equation limit, see [25]), wy=0, €,=0, and o,
=0, the system (7) reduces to the single equation
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Fa
Z—lj_ = (Dlé_XUZ +[1+bO00)[2v(1-v)(v - a)]), (11)

which admits the exact traveling-wave solution
1 1 _
v= 5[1 + tanh(kX + w7)] = E[l +tanh k(X +C7)] (12)

where

1 [3[1+60(0)] _1-2a
K_2 —2D1 , a)——4 2[1+b60(0)],

and =w/k=(1-2a)ID,[1+bO(0)]/(12) is the dimen-
sionless wave speed. Higher temperatures then induce higher
propagation velocities, in agreement with experiments on
solitary traveling pulses in nerve physiology experiments
[1,8,25,31]. This relation will be compared below with the
results obtained by numerically integrating the full system of
equations for the model for general O(7).

We can now reanalyze in more detail the problem of the
time- and space-dependent variations of temperature in the
one-dimensional case. Introducing advanced and retarded co-
ordinates é&=X+c7 and np=X-c7, where c is a positive con-
stant, and requiring purely advanced solutions, i.e., depen-
dence on the variable £ only, the system (7) becomes an
ordinary autonomous system of differential equations.

One should now find the value of the constant ¢ for given
imposed boundary conditions. In the standard FHN equa-
tions one can find the (constant and unique) value of ¢ in the
traveling-pulse case by looking for the homoclinic trajectory
for example, or for the periodic wave train case, which is
typically used in the standard FHN theory to get the disper-
sion curves at fixed values of the global temperature [25].
Heat transfer effects, however, introduced in this paper, re-
quire us to take into account possible local temperature ex-
changes of the entire fiber with the external environment.
Such a physical situation is not possible if the axon is mod-
eled by a one-dimensional equation system. For this reason,
we prefer to model the fiber as a long thin two-dimensional
object, and solve the system of partial differential equations
(7) using finite-element methods. In this way suitable bound-
ary conditions for heat transfer can be imposed.

With this aim we must fix the value of the parameters
first, and then set up the numerical experiments, as shown in
the next section.

IV. NUMERICAL ANALYSIS AND RESULTS OF THE
MODEL

The parameters of our model in Egs. (7) must be chosen
to give results comparable with experimental data, available
in the literature for nerve tissues only, mainly giant axons.
We started by selecting a typical choice of temperature-
independent FHN parameters [32,35], i.e., vo=0, a=0.1,
€,=0.005, y=2, D;=1, X=1. The remaining parameters,
including parameter b, related to thermal effects and dis-
cussed in the appendixes, are determined using results sum-
marized in Refs. [36,37], in which single impulses of action
potential are measured experimentally to produce 2—7 u°C
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temperature spikes in cold or room-temperature mammalian
nonmyelinated nerve fibers and 23 ©°C in nonmyelinated
garfish olfactory nerve fibers [14]. In order to fix the dimen-
sionless scale length, we note that for the giant squid axon
action potential (see [25], p. 254) the typical length scale is
on the order of X,=0.65 cm. Using for R,C,,=10"*s, with
the chosen value of €;=(R,C,,)/(L/R;)=0.005, we have
L/R;~0.02 s. In this way a dimensionless time interval At
=50 corresponds to At=5 ms, a typical duration for an axon
action potential (see [25], p. 129, Fig. 4.7). Moreover, using
typical data for brain tissue taken from [37], kg
~05W/mK, pc,~3.9x10°J/m*K, so that ky/pc
~107 m*/s. It then also follows that €,4=(pc,/ko)X;
~ 107 (see Appendix B for the definition of these param-
eters). The remaining parameters are €, €5, 0}, €3, Os.
In our dimensionless analysis, a 10 u°C temperature varia-
tion with respect to the reference dimensionless temperature
®=0 means a maximal excursion of @, ~ 107 (unmyeli-
nated case) when a single action potential pulse will spread
in the fiber. A parametric study has shown that a value
around €50, ~ 1073 gives such an excursion. The value of
0,..« grows monotonically with o so our parameter fixing
used in the rest of our paper is unambiguous. As a remark,
the myelinated case would instead require €,50,=10"* or
less. Higher values induce higher-temperature excursions,
while lower ones give the opposite effect. This is not surpris-
ing because the parameter o is associated with the resistiv-
ity in the heat equation and regulates the influx of energy. As
expected, Joule heating effects generated by the passage of
the action potential are extremely small. However, if a strong
external electric stimulus is applied to the fiber, such a Joule
effect term could produce greater effects. As previously
shown the quantity €;; determines the thermal damping
length after an action potential pulse. A choice of €3=10
will imply a complete reabsorption of heat on the tail of the
action potential. Lower values of €3 imply longer cooling
times, which are not in agreement with experiments, how-
ever. The variable O. is associated with the perfusion or
background initial temperature, and in our simulations will
be varied for various cases. Summarizing, our choice is the
fOHOWing: €)= €14€x1 10_7, €501 = €560~ 5X 10_6,
€)3= €136 =0.05.

The explicit parameter choices are summarized in Table I.
In more detail, we have performed a numerical analysis of
the model equations in two dimensions simulating an elon-
gated fiber and a squared domain.

A. Elongated fiber

In order to simulate an axon as an elongated fiber, we
have built a domain D of 200 X 1 space units. We have then
implemented heat exchanges with the boundary. Zero-flux
boundary conditions have been imposed for v and w, i.e.,

i-Vo=i-Vw=0, XedD, (13)
where 71 is the unit normal to the boundary. For the variable

® we have instead chosen Dirichlet conditions on the bound-
ary:
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TABLE 1. Values used for the analytic and numerical analyses
of the model.

Parameter Value

X 1
D, 1

b 0.6

p3 1

a 0.1

0% 2

Vg 0
€ 0.005
€3 0.05
€4 1077

€50 5x10°¢
0. Various choices
®=0., XedD, (14)

which in dimensional form means that a thermostat is as-
sumed to be located on D. The initial data are

0(0,X) =w(0,X) =0, 0(0,X) = 0.. (15)

The action potential is initiated by a stimulus located at one
extreme of the fiber, with a smooth Gaussian profile centered
on it and damped in time, i.e.,

wo = e XX~ (16)

with f=1, X,=100, and g=2. Comsol MULTIPHYSICS [38]
finite-element procedures, based on sufficiently fine qua-
dratic Lagrange elements, have been adopted in union with a
direct solver (UMFPACK). The results can be summarized as
follows.

1. Detection of thermal and electrical response

Figure 1 shows both the dimensionless action potential
and the temperature as functions of 7, measured in the center
of the fiber, in the case of 7.=6.3 °C. As mentioned before,
this situation considering temperature to be constant gives
the standard FHN electrical theory. Due to heat coupling, a
temperature gradient is associated with action potential
propagation. As expected, the heat production and the fol-
lowing reabsorption are in phase with the action potential, in
agreement with the experiments [7,13-15,39]. The maximum
value of O is of the order of 107, which corresponds ap-
proximately to 10 x'C. This means that the parameter esti-
mation is correct and in agreement with experiments on real
nonmyelinated nerve fibers [7,17].

2. Local effects of temperature on excitability parameter

It is important now to estimate the modifications induced
by a time-varying temperature on the electric parameters of
the model. Introducing the temperature-dependent quantities
6,(0)=¢,,39, it is interesting to study the behavior of the
quantity
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150 200 250 300 350 T

FIG. 1. Superimposed plots of the dimensionless action poten-
tial v and temperature © as functions of dimensionless time 7 taken
in the center of the fiber, in the case of T:=6.3 °C (0:=0).

€1(0:) - 6,(0)
€1(0-)

which might be considered as representing the relative varia-
tion of the FHN excitability after an action potential passage
with respect to the constant-temperature situation.

Figure 2 shows Ae€,;/ €, in the case T-=6.3 °C (0.=0),
as a function of the dimensionless time 7. This parameter is
almost unchanged with respect to the temperature-
independent FHN equations; hence, the passage of an action
potential pulse is a purely local effect and in practice does
not affect the electrical dynamics. On the other hand, on
changing the global temperature ®. (the thermostat) the pa-
rameter €,,(®) is noticeably affected, although Ae€,,/€,; is
not, d%e to the modest variations for ®, always on the order
of 107°.

=1= 3@—@)*

A621/621= (17)

3. Global effects of temperature on action potential

The effect of temperature on the action potential produced
by a single current pulse is studied by setting the thermostat

Aegy

€21

106

-0.2

150 200 250 300 350 T

FIG. 2. Evolution in time of (A€,;)/(€,;) at the point (0, 0) in
the case T+=6.3 °C (0.=0).
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FIG. 3. Plot of the action potential v vs 7, taken in the center of
the fiber, superimposed for the cases 7-=6.3, 12, and 18 °C. As
expected, low temperatures induce larger action potential durations,
while higher ones make the signal profile narrower in time and
faster.

at different values of temperature. Four simulations have
been performed corresponding to the values T
=(6.3,12,18,19) °C, equivalent to @.=(0,0.57,1.17,1.27).

In Fig. 3 we have taken the dimensionless action potential
at the center of the fiber and superimposed the curves for the
cases T+=6.3 (standard FHN model), 12, and 18 °C. The
case T-=19 °C is absent due to a conduction block which
does not allow the action potential to arrive at the center of
the fiber, as explained below. As expected, at low tempera-
ture the spike of the action potential has a larger duration, in
particular in its declining phase. On raising the temperature,
the spike becomes smaller in time, because the signal has
traveled faster due to high-temperature effects. In this case
the action potential is diminished also in amplitude. These
results are qualitatively in good agreement with the original
experimental work of Hodgkin and Katz [6] and with our
semianalytical estimates. Figure 3 in fact reproduces the ex-
perimental Figs. 3 and 4 of their analysis for temperatures
only up to T»=18 °C. While our model predicts conduction
blocks for greater values of 7=> 18 °C, experimental results
do not show these phenomena unless temperatures reach val-
ues up to 35-40 °C [6]. This limit of our model for higher
temperatures has the following causes.

(i) The poor physiological meaning of the FHN electrical
model: On implementing the more realistic HH model, the
results will have a better quantitative meaning and interpre-
tation.

(ii) The quantity Q;, (see Appendix A). It is well known
[1,6] in fact that Q;, can be assumed constant in a certain
range of temperatures only. Higher temperatures require a
change for the value of this constant which regulates the
dynamics of ion channels, appropriate to the new tempera-
ture range. Consequently, modifying the value of Q,, we
could reach higher temperatures, although for the aim of the
present paper we will limit our analysis to temperatures
smaller than 20 °C.

4. Temperature-amplitude relation

Experimentally [6] at T=5 °C the corresponding action
potential amplitude V,,,=108.5 mV, while at T=18.5 °C
the action potential amplitude is V,,,=99 mV. Conse-
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10% (6-8,)

100 150 200 250 300 T

FIG. 4. Plot of ®—0. vs 7, taken in the center of the fiber,
superimposed for the cases ©.=(0,0.57,1.17) equivalent to Tk
=(6.3,12,18) °C.

quently, one has the ratio V,,,(T=18.5 °C)/V,,,(T=5 °C)
~0.91, while similarly using our simplified model we get
Umax(T=18 °C) /v, (T=6.3 °C) ~0.87.

5. The effect of temperature on action potential duration
and shape

Experimentally [6], at T=18.5 °C the corresponding ac-
tion potential duration (APD) t~0.8 ms while at T=5 °C
one has r~3.6 ms. The ratio of z,pp(7T=18.5 °C)/tpp(T
=5 °C)~0.22, while using our simplified model (dimen-
sionless units) #5pp(7=18 °C)/12pp(T=6.3 °C) ~0.39.

Concerning the effect of temperature on rise of the action
potential, in our model upstroke velocities depend on tem-
perature. The values (dV/dt),(T=6.3 °C)=0.08 (FHN
standard), (dV1dt) max(T=12 °C)=0.10, (dV1dt) max(T
=18 °C)=0.11 show that global temperatures affect action
potential properties too.

6. Heat release and reabsorption

In Fig. 4 we have plotted ®—0. versus 7, taken in the
center of the fiber, superimposed for the cases T==6.3 (stan-
dard FHN model), 12, and 18 °C. As expected a traveling
pulse of action potential, in the case of a thermostat tempera-
ture 7 in the range 7.=6.3—18 °C, produces a correspond-
ing temperature variation of 10—15 uK.

7. Space and time evolution of action potential spread

Figure 5 shows for temperature values T-=6.3 (standard
FHN model), 12, 18, and 19 °C the development in space
and time (dimensionless units) of the action potential v, mea-
sured on a line parallel to the long side and passing in the
middle of the fiber. As expected, in the case of lower tem-
perature T+=6.3 °C (standard FHN model), the thickness of
the action potential (evaluated by a vertical section and cor-
responding to its duration), is larger and the speed is slower
in comparison with the other three cases.

The action potential thickness evaluated by a horizontal
section and corresponding to its wavelength shows a de-
creasing wavelength as the temperature increases.

Higher temperatures 7==12, 18, and 19 °C induce a thin-
ner spike and lower the slope of the line representing the
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FIG. 5. (Color online) Plots in the 7-X plane of a traveling pulse v for T«=6.3 and 12 °C (top left and right figures) and for T:=18 and
19 °C (bottom left and right figures). The signal is measured on a line parallel to the long sides and passing in the middle of the fiber. Notice
the increasing speed conduction with temperature, the action potential contraction, and, in the hottest case, the presence of a conduction

block.

traveling pulse in the plane X-7, which implies increased
conduction velocities according to Chapman’s analysis [8].
The last case of T«=19 °C is remarkable in that the conduc-
tion failed (“heat block™) after a few dimensionless time
units. As discussed above, this is also expected from experi-
ments [6,21].

8. Conduction velocity

Figure 6 shows the conduction velocity at different tem-
peratures (dimensionless units) for the analytic solution in
the bistable equation limit, contrasted with the same quantity
obtained from the numerical integration of the exact model.
The trend is similar, showing that a higher background tem-
perature induces higher conduction speed for a traveling ac-
tion potential pulse. This model, whose parameters have
been calibrated for an elongated nerve fiber, can now be
applied to a domain that is not elongated, i.e., to a square
region representing a patch of neural tissue.

B. Square domain

In our generalized FHN model we have analyzed the dy-
namics of electrical and thermal activities in a two-

c
061 T
-=- Analytical solution
0.4 (bistable equation limit)
— Numerical Analysis
(exact theory)
0.2
0 0.2 0.4 0.6 0.8 1.0 12 O,

FIG. 6. The dimensionless velocity at different dimensionless
temperatures for the analytic solution in the bistable equation limit
contrasted with the same quantity obtained from the numerical in-
tegration of the exact model.
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FIG. 7. (Color online) Dimensionless action potential v map at
7=500.

dimensional square domain. In detail, we have performed a
simulation on a square of 100X 100 dimensionless space
units, centered at the origin. Boundary conditions in this case
have been chosen to be zero flux for v, w, and O to avoid
boundary effect contamination in the dynamics. The initial
data for w and v have been chosen to initiate a spiral wave,
i.e., v=0.8 in the rectangle X>0 and Y>35 while w=0.2 in
the rectangle X>0 and Y <-5. The dimensionless tempera-
ture at the initial time has been chosen to be ®=0. This
means 7:=T,=6.3 °C (i.e., ©-=0). In principle one should
have defined different constant temperatures on the activated
and refractory rectangles, respectively. We have neglected
this modification of the initial data, assuming that shortly
after the beginning of the simulation, such a heat differential
would have been totally reabsorbed by the medium, resulting
essentially in a short-lived effect not relevant for the code
evolution. This assumption will be justified later, when we
will discuss the spiral’s tip trajectory in the temperature do-
main. Quadratic Lagrange finite elements are used again to
numerically solve the problem. The mesh used was 100
X 100 squared elements with AX=1. Regarding time step-
ping, we have used a fine adaptive algorithm of Comsol
MULTIPHYSICS software, such that the maximum time step is
A7=0.15. The numerical integration was stopped after 30007
time units. With these choices, the magnitude of the maxi-
mum violations of the zero-flux boundary conditions is
~107°. The map of voltage v at time 7=500 is shown in Fig.
7 with the characteristic spiral pattern. Figure 8 shows the
dimensionless temperature ® at time 7=500: here the elec-
trical spiral pattern generates a spiral temperature wave due
to the Joule effect. Figure 9 shows the same plot as Fig. 8 but
with the isovoltage lines and the trajectory of the spiral’s tip
in the interval 7=360-500 superimposed. We note that the
regions in which the gradient of v is steeper appear to be
hotter (a consequence of the Joule term), while the spiral’s
tip is contained in the hottest area (around 15 u°C). It is
remarkable that the heat has been reabsorbed quite rapidly
and there is no hot trail in coincidence with the tip’s trajec-
tory. Moreover, the tip’s trajectory is essentially the same as
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FIG. 8. (Color online) Dimensionless temperature ® map at
7=500.

in the temperature-independent FHN model, due to the fact
that temperature excursions of some tens of u°C have al-
most no influence on the electric dynamics of the system.
Clearly in the case of different initial data and boundary
conditions such that there could be temperature variations of
some °C, the spiral tip’s trajectory will be modified notice-
ably, although this analysis will not be addressed here and
will be left for future work. Finally, Fig. 10 shows the evo-
lution in time 7 of v and O at the point (X,Y)=(-40,0).
Again as expected the heat release and reabsorption are to-
tally in phase with the action potential, as occurs in the pre-
viously discussed axon simulations. However, a modulation
effect in the temperature is present and this fact can be ex-

xg?
14

12

[1X:]

r a6

¢4

0.2

01

S0 40 -2 -0 -10 a 10 20 0 a0 so X

FIG. 9. (Color online) Dimensionless thermal ® map at 7
=500 superimposed by the isovoltage v lines and the trajectory of
the spiral’s tip in the interval 7=360-500. In hotter areas the elec-
tric gradient changes noticeably and a hotter spot is present
(14 ©’°C) close to the spiral’s tip. The colored legend is relative to
the value of ©.
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FIG. 10. Evolution in time of dimensionless temperature ® and
the action potential v shown at the point (X,Y)=(-40,0) due to the
spiral wave’s dynamics.

plained by Fig. 11, in which we have shown the spiral’s tip
trajectory which manifests a meandering such that the spiral
tip (the hotter area) can be far from or close to the observa-
tion point P.

V. CONCLUSIONS

We have discussed a wide set of experimental results,
focused on temperature effects in excitable biological tissues.
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FIG. 11. Spiral tip trajectory and observation point P located at
(X,Y)=(-40,0).
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In the framework of mathematical models and in particular
in Hodgkin-Huxley’s theory the temperature is assumed to
affect the kinetics of channels and currents and can have a
dramatic effect on the kinetics of gating. Ideally, then, it
should be accounted for in a model by incorporation of the
0,0 experimentally determined scaling factor. However, heat
transfer effects traditionally have been neglected. In this pa-
per, we have built a generalized FitzHugh-Nagumo model
which includes dynamical heat transfer in tissues, described
by a bioheat equation and resulting in a thermoelectric cou-
pling. The characteristics of the model agree with the most
credible hypothesis on heat propagation in nerve fibers, the
condenser theory. Calibrating model parameters to match
typical experimental data, we have performed a series of
simulations for a two-dimensional elongated fiber and for a
square domain, qualitatively representing an axon and a neu-
ral tissue, respectively, although different choices of param-
eters should describe other excitable tissues described by
FHN equations, like cardiac cells for example. The model
reproduces many experimental features such as (1) the action
potential duration shortening and amplitude decrease as tem-
perature is raised; (2) the conduction velocity increase with
temperature; (3) the existence of conduction blocks at suffi-
ciently high temperatures, and (4) the heat release and reab-
sorption in phase with the action potential. In two dimen-
sions, simulations suggest that electric waves generate a
spiraling pattern in the temperature domain with hotter spots
around the spiral’s tip, having temperature variations of tens
of u°C. This may give a possible way to physically identify
the spiral’s tip. Thermal detectors constructed by using a thin
film of synthetic pyroelectric material, polyvinylidene fluo-
ride (PVDF) are typical tools for analyzing such tiny heat
processes in stimulated nonmyelinated nerve fibers. The re-
sponse of such detectors is very fast and the time for half-
maximum deflection is of the order of 1 ms [15]. These tools
could be used for analyzing such heat transients predicted by
this generalized model.

APPENDIX A: DERIVATION OF THE EQUATIONS FOR
THE MODEL

The classical one-dimensional HH equations [1,25] for
the electric propagation in the giant squid axon, externally
kept at uniform constant temperature 7, are given by

7
= 2 DoV~ V) + g (V= V)
+ gl(Vl - V)] + Iapp,
= 9Dl -)-BVIL (A1)

where j=m,h,n and a;(V),B,(V) are specific functions pro-
posed by HH (listed, e.g., in [25], p. 127) and the numerical
values of the membrane capacitance C,,, the channel conduc-
tances gna.. 8k, &5 the axon’s radius p, and the resistivity of
the intracellular space r can also be found in [25]. The

temperature-dependent factor d)(T):Q(lg_TO)/Q in the second
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equation was given by HH with 7,=6.3 °C and Q=10 °C,
0,0=3 while the factor 9(T)=A[1+B(T-T,)] in the first
equation was introduced by Moore [40] and subsequently
reanalyzed by FitzHugh [11,22]. A is the (constant) ratio be-
tween ionic conductances of the axon at 6.3 °C while B
determines the rate of change of conductance with tempera-
ture. The values of A and B vary considerably from axon to
axon; here we fix their values following FitzHugh and Cole
[41], i.e., A~1.14 and B~0.06 °C~'. In this paper we have
been concerned with an approximation of the HH model, i.e.,
the FitzHugh-Nagumo theory, studying the coupling of the
associated equations with the bioheat equation. Following
Keener and Sneyd’s monograph [25] this simplified model
can be obtained easily using a simplified scheme for the cell
membrane as an electric circuit. We assume that the cell
consists of a capacitor, representing the membrane capaci-
tance, a nonlinear current-voltage device for the (fast) cur-
rent, and a resistor, inductor, and battery in series for a (slow)
recovery current [25]. Using Kirchhoff’s laws, we get

L,=F(V)+i+]I,, (A2)
where [, is an applied external current, i is the current
through the resistor-inductor, and F(V), left generic for the
moment, is a cubic function of the potential having three real
roots located at V=0, «V|, and V| with 0<a<1 and the
smallest and the largest ones corresponding to stable solu-
tions of

d—Vz—F(V).

. (A3)

We take the passive resistance of the nonlinear element to be
R,=1/F’(0). By direct evaluation, Eq. (1) becomes

A av
V-(DVV):CME+F(V)+1'+IO. (A4)
This equation is coupled to
di V-Vy—Ri
Ce (A3)
ot L

where 5=Dik is the conductivity tensor (measured in S m?),
V is the membrane potential, V,, is a potential gain across a
battery, and R and L are the resistance and the inductance of
the membrane. Typically in cable equation theory, quantities
(capacity, inductance, currents, etc.) are measured per unit
area. For convenience we restore proper units by multiplying
cable equation by a common area term. The coupled equa-
tions (A4) and (A5) are often considered sufficient to de-
scribe the basic propagation of electric signals over a physi-
ological excitable tissue, neglecting heating effects. One can
derive a temperature-dependent FHN model as follows:

V- VO—Ri)

Ji
o ¢(T)< L
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av

cm——v.(éVV)=—(”(T)
ot

T>[F(V) +i]=1y, (A6)
where the temperature-dependent factors are chosen exactly
as in the temperature-dependent HH relations. Equations
(A6) will be a prototype for general temperature-dependent
excitable biological tissues. They must be coupled to a modi-
fied Pennes’ equation

Vi(kilVIT) + (TikViVVkV+ C*W*(T* - T) = pcpé’tT, (A7)

where the term csw=(T«—T) accounts for both axon perfusion
and possible metabolic effects, considered linear in the tem-
perature for simplicity.

In fact it is experimentally known that such effects tend to
redistribute heat in the medium immediately after an action
potential pulse has spread [7,12-15], allowing the fiber to
come back to the “initial temperature” 7. In general T
should depend on space and time, i.e., T«="Tx(¢,x), although
in this paper we assumed for the sake of simplicity 7.
=const. We remark that this temperature is in principle dif-
ferent from the “reference temperature” T, entering ¢(7T) and
7(T). We have assumed for simplicity temperature-
independent conductivity tensors and for a similar reason we

adopt a temperature-independent k to avoid self-diffusion ef-
fects [42]. Moreover, we have limited our consideration here
to homogeneous and isotropic tissues, which means in Car-
tesian coordinates 0= 0ySy, D=D,5;, and k=k,d;, with
gy, Dy, and k, constants.

APPENDIX B: DIMENSIONLESS ANALYSIS

Equations (4)—(6) can be put into a simpler form by intro-
ducing standard dimensionless variables.

Let us denote the typical action potential and resistance
scale values by V=V, and R,=R,, respectively. It follows
that i;=V,/R; is a typical current scale value. It is natural to
introduce the following dimensionless variables:

V(t,x)

t,x)=
v(1,%) m

. w(ed) = ’%iu,f), B1)

where x=(x,y,z) denotes the actual position vector in space;
analogously, the following dimensionless quantities can be
introduced:

A R, R
=0 we= "ty y=—, B2
Uovl WOV10 VR] (B2)
together with
R,
fw) =~ VF(Vlv) =3 -a)(l-v), (B3)
1

where 3, is a free parameter for the model. Because of the
simplification arising limiting our attention to the case of
homogeneous and isotropic tissues, it is clear that we may
have a common length scale factor L, for all three spatial
axes. Let Ly;=X, be such a common value so that
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Z
Z=— B4
Xo (B4)

are dimensionless quantities. To introduce a time scale factor,
from Egs. (4) and (5) we are faced instead with two possible
choices,

L
tgl) = IEZ) = Rlclm (BS)
R,
so that the quantity
) 2
t,”  RiC,
€ =" = B6
21 til) L ( )
is dimensionless. We introduce the notation
po) 1
B _
€;= E, €i=€; (B7)
s

used below. Let us select til) as the time scale, i.e., introduce

the dimensionless time variable:

t Ry
6= @ = Zt. (BY)
The next step is that of introducing scales for the electric
(specific) conductivity and diffusivity. From dimensional
analysis, a typical scale for diffusivity is D$=X(2]/R1; hence,
we will denote by D; the dimensionless quantity associated
with Dy

D0_2 =D1. (B9)

Analogously, a typical scale for conductivity is o
=1/(XyR,), so that o is the natural dimensionless quantity
associated with oy:

O'0R1X0=U'1. (BlO)

Finally, the same model equations suggest a way to intro-
duce scales for the temperature. In fact, we have various
possibilities:

r=1y TP=T. T7=0.

We find it convenient to use T?):Q as a scale for the tem-
perature. Thus, we introduce

(B11)
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0.7 = T(t,x) - T,

(B12)
as the dimensionless variable associated with the tempera-
ture. Actually, from Egs. (4)—(6) other time scale quantities
can be defined:

2 3
B P @ P s PXQ (B13)
s ’ s ’ s 2 ’
WiCx ko Vl/Rl

so that other dimensionless ratios, used below, can be
formed:

wacL koL ViL
€13= PCpRl’ EM:M’ flszm’
R C,wecs koR,C,, ViC,
623=p—cp’ 624=TPX(2), €5= pchXS'
(B14)
Furthermore we define
b=B0=0.6 (B15)

using values previously discussed in the HH case. Finally,
letting @..= O|;_;,, we obtain the (dimensionless) quantity
T.—T
0.=—.
0
The dimensionless heat-transfer—-FHN coupled equations
then take the form

(B16)

6213”_0 =D,V + (1+bO)[Sv(1 - v)(v - @) — w] - wo,

ow
%=3®(U_UO_7W),

90

£=614V2®+61501V0‘VU—€13(®—®*), (B17)
where here the Laplace and gradient operators are referred to
the (Cartesian) dimensionless variables X, Y, Z. Rescaling
time by 7=(y/ tiz))tE (x/ €51) 0, one obtains an alternative di-
mensionless form, precisely Egs. (7).
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